Single-shot line scan imaging using stimulated echoes.

نویسندگان

  • J Finsterbusch
  • J Frahm
چکیده

A new high-speed MRI method is described for single-shot line scan imaging (LSI) based on stimulated echoes (STE). To allow for multislice imaging, the technique comprises a series of slice-selective preparation pulses (each corresponding to the first RF pulse of a STE sequence), a slab-selective refocusing pulse (second RF pulse), and multiple line-selective read pulses (third RF pulses). An alternative version employs packages of two slice-selective pulses followed by multiple line-selective read pulses. Experimental applications deal with human brain imaging on a clinical MRI system at 2.0 T. The technique offers user-selectable trade-offs between volume coverage (1-15 sections) and in-plane spatial resolution (1-5 mm linear pixel dimension) within total acquisition times of less than 500 ms. Although LSI yields a lower signal-to-noise ratio than Fourier imaging, single-shot LSI with STEs is free from resonance offset effects (e.g., magnetic field inhomogeneities and susceptibility differences) that are typical for echo-planar imaging. Moreover, the technique exhibits considerable robustness against motion and provides access to arbitrary fields-of-view, i.e., localized imaging of inner volumes without aliasing artifacts due to phase wrapping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slab scan diffusion imaging.

For maximum robustness of a diffusion-weighted MR imaging sequence, it is desirable to use a single-shot imaging method. This article introduces a new single-shot imaging approach that combines the advantages of multiple spin-echoes with the technique of line scan diffusion imaging. A slab volume, which can be spatially encoded with fewer phase encodes than a regular field of view, is selected ...

متن کامل

Diffusion tensor mapping of the human brain using single-shot line scan imaging.

A recently developed single-shot line scan imaging technique for diffusion measurements (Finsterbusch and Frahm, Magn Reson Med 1999;42:772-778) was extended to full diffusion tensor mapping of the human brain. Because the sequence acquires stimulated echoes from individual columns of magnetization ("lines"), the approach is affected neither by spatial aliasing when studying inner volumes nor b...

متن کامل

Single-Shot 3D Gradient and Stimulated Echo Imaging

Single-shot STEAM MRI [1] is insensitive to off-resonance effects because it is based on RF refocused echoes but suffers from a inherently low signal-to-noise ratio (SNR). Recently, gradient and stimulated echo (GRASTE) imaging [2] has been shown to ameliorate the limitations of single-shot STEAM by improving the SNR efficiency. Here, an extension of 2D GRASTE is presented that is capable of ac...

متن کامل

Rapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging.

A subsecond magnetic resonance imaging (MRI) technique for isotropic diffusion mapping is described which, in contrast to echo-planar imaging (EPI), is insensitive to resonance offsets, i.e., tissue susceptibility differences, magnetic field inhomogeneities, and chemical shifts. It combines a diffusion-weighted (DW) spin-echo preparation period and a high-speed stimulated echo acquisition mode ...

متن کامل

Diffusion-weighted single-shot line scan imaging of the human brain.

Single-shot line scan imaging (LSI) was adapted to diffusion-weighted (DW) MRI by replacing the initial 90 degrees radiofrequency pulse of the underlying high-speed stimulated echo sequence by a DW spin-echo preparation period. Implementation on a 2. 0 T whole-body MRI system yielded DW images of the human brain with b factors of 750 s mm(-2) and total imaging times of about 500 ms either for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 1999